# Step 1. load dengue dataset the current week ####
#y <- denhotspots::read_dengue_dataset(path = "1.data/current_week/DENGUE2_.txt",
# spatial_resolution = "country",
# status_caso = c(1, 2))
# Step 2. load dengue dataset the last week ####
#x <- denhotspots::read_dengue_dataset(path = "1.data/last_week/DENGUE2_.txt",
# spatial_resolution = "country",
# status_caso = c(1, 2))
# Step 3. extract the ids not geocoded ####
#z <- y |>
# dplyr::filter(!FOL_ID %in% unique(x$FOL_ID)) |>
# dplyr::arrange(FOL_ID)
# Step 4. save the results ####
#write.csv(z,
# file = "dengue_mx_2024_01_23.csv")
# Step 1. subir el vectores de direcciones ####
# addresses <- denhotspots::data_geocoden(infile = "dengue_mx_2024_01_23",
# data = FALSE,
# sinave_new = TRUE)
# Step 2. text manipulation ####
# stringr::str_subset(addresses, "#")
# addresses <- stringr::str_replace_all(addresses,
# pattern = "#",
# replacement = " ")
# Step 3. geocoding ####
# denhotspots::geocoden(infile = "dengue_mx_2024_01_23")
# Step 4. load the dengue geocoded & dengue dataset #####
# z <- readRDS("~/Library/CloudStorage/OneDrive-Personal/proyects/geocoding_mex/2024/dengue_mx_2024_01_23_temp_geocoded.rds")
# Step 5. load the dengue dataset ####
#data <- denhotspots::data_geocoden(infile = "dengue_mx_2024_01_23",
# data = TRUE,
# sinave_new = TRUE)
# Step 6. save the results #####
#denhotspots::save_geocoden(x = z,
# y = data,
# directory = "9.geocoded_data",
# loc = "dengue_mx_2024_01_23")
#Step 1 load geocoded dengue dataset current week ####
# load("~/Library/CloudStorage/OneDrive-Personal/proyects/geocoding_mex/2024/9.geocoded_data/geo_dengue_mx_2024_01_23.RData")
# Step 2. load geocoded dengue dataset last week ####
# load("~/Library/CloudStorage/OneDrive-Personal/proyects/geocoding_mex/2024/8.RData/denmex_2024.RData")
# Step 3. row binding ####
# z <- rbind(z, y)
# Step 4. load the current week dataset
# w <- denhotspots::read_dengue_dataset(path = "1.data/current_week/DENGUE2_.txt",
# spatial_resolution = "country",
# status_caso = c(1, 2))
# Step 5. eliminate the CASOS DESCARTADOS ####
# z <- z |>
# dplyr::filter(VEC_ID %in% unique(w$VEC_ID)) |>
# dplyr::arrange(VEC_ID)
# Step 6. save the results ####
# save(z, file = "8.RData/denmex_2024.RData")
email : felipe.dzul.m@gmail.com
celular : 9999580167
slides: https://calm-hummingbird-41cb33.netlify.app/talks/hotspots_cases_R/#/